Nonparametric Estimation of Extreme Conditional Quantiles

نویسندگان

  • Jan Beirlant
  • Yuri Goegebeur
چکیده

The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on i.i.d. samples. On the other hand, quantile regression based procedures work well for estimation within the data range i.e. the estimation of nonextreme quantiles but break down when main interest is in extrapolation. Our contribution is a two-step procedure for estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles are estimated nonparametrically using a local version of the Koenker and Bassett (1978) regression quantile methodology. Next, these nonparametric quantile estimates are used as analogues of univariate order statistics in well known extreme quantile estimators. The performance of the method is evaluated for both heavy tailed distributions and distributions with a finite right endpoint using a small sample simulation study. A bootstrap procedure is developed to guide in the selection of an optimal local bandwidth. Finally the procedure is illustrated in three cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional nonparametric estimation of conditional extreme quantiles

− We address the estimation of quantiles from heavy-tailed distributions when functional covariate information is available and in the case where the order of the quantile converges to one as the sample size increases. Such ”extreme” quantiles can be located in the range of the data or near and even beyond the boundary of the sample, depending on the convergence rate of their order to one. Nonp...

متن کامل

Functional kernel estimators of conditional extreme quantiles

We address the estimation of “extreme” conditional quantiles i.e. when their order converges to one as the sample size increases. Conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed kernel estimators. A Weissman-type estimator and kernel estimators of the conditional tailindex are derived, permitting to estimate extreme conditio...

متن کامل

Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring

In this paper, we investigate the estimation of the tail index and extreme quantiles of a heavy-tailed distribution when some covariate information is available and the data are randomly right-censored. We construct several estimators by combining a moving-window technique (for tackling the covariate information) and the inverse probability-of-censoring weighting method, and we establish their ...

متن کامل

Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory

This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, where particularly f...

متن کامل

Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory

A framework is introduced allowing to apply nonparametric quantile regression to Value at Risk (VaR) prediction at any probability level of interest. A monotonized double kernel local linear estimator is used to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, nonparametric quantile regression is combined with extreme value theory. The ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002